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Theory of Čerenkov and transition radiation from layered structures

B. Lastdrager,* A. Tip,† and J. Verhoeven‡

FOM-Instituut voor Atoom- en Molecuulfysica, Kruislaan 407, 1098SJ Amsterdam, The Netherlands
~Received 24 August 1999!

A scattering theoretical approach is used to describe the generation of both transition and Cˇ erenkov radiation
due to the passage of fast electrons through layered, in general absorptive, dielectrics. It leads to a considerable
improvement over the coherent summation method usually employed. Reflection of the produced radiation
from the layer interfaces is now properly taken into account and absorption of radiation, if present, is auto-
matically taken care of. The usual restriction that the energy of the produced photons must be small relative to
the initial electron energy is lifted. In contrast to existing theories the production of Cˇ erenkov radiation, if it
takes place, is included as well. Our expressions for radiation production feature the eigenmodes of the
Helmholtz equation for the dielectric and we discuss how the latter can be obtained by means of a transfer
matrix formalism. A numerical evaluation shows that under the appropriate conditions our results are in
agreement with those from the coherent summation formalism. Finally, we present numerical results that give
an impression of the relative yields for transition and Cˇ erenkov radiation.

PACS number~s!: 41.60.Bq, 34.50.Dy, 34.50.Bw, 42.50.Ct
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Th
I. INTRODUCTION

A. Background

Fast electrons moving through a dielectric medium c
produce radiation through a number of different mec
nisms. Well known is the Cˇ erenkov radiation~CR!, which is
produced throughout the medium provided the electron
locity exceeds the phase velocity of the radiation inside
medium. A second type of radiation is transition radiati
~TR!. Here the electron energy can be arbitrary but the m
dium must be spatially inhomogeneous, i.e., the electric p
meability «(x) must depend onx. This leads to a variable
charge density

r~x!5]x•E~x!5@]x«
21~x!#•D~x!, ~1.1!

causing the electron to accelerate and decelerate with
accompanying production of radiation. Thus it can be view
as a type of bremsstrahlung~BS! associated with the polar
ization properties of the dielectric. At a sharp interface,
over a wide frequency range can be generated.

Third, direct BS, due to collisions of the electron with th
atoms or ions constituting the dielectric can also occur.
the other hand, such collisions deflect the electron and t
act as a loss mechanism for TR and CR production. Thi
the case in particular in a periodic layered medium with n
mally incident electrons, where the periodicity is used
enhance TR production at a given frequencyv.

Throughout the years there has been some interest in
possibility of using TR and CR generated in this way a
simple source for x-ray radiation. For recent experimen
results, see@1#. Since the TR produced at an interface
proportional to (D«)2, D« being the jump in« across it,
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layers with large differences in« are required for efficient
radiation production. In particular, in Ref.@2#, where an ex-
tensive list of earlier references is given as well, Kapl
et al.explore theoretically the use of the system of interfac
present in a multilayer in combination with MeV electron
for TR production. Here absorptive dielectrics at frequenc
near absorption edges for inner shell excitation are inter
ing candidates, since they lead to extremely large contras
«(v) and correspondingly increased yields. These auth
also show that around such absorption edges direct BS
be neglected. The above structures are also interesting
CR production, since it is precisely near the absorption ed
where the Cˇ erenkov radiation condition can be met. The id
of using dispersive dielectrics for soft x-ray production w
considered earlier by Bazylevet al. @3# in connection with
CR.

B. Existing theory

The usual theoretical setup@4# for a description of TR
starts off from the radiation produced at a single interfa
The total radiation emanating from a multilayer is then o
tained by coherently summing the contributions from the
dividual interfaces. In addition, it is common practice to a
sume that the energy of the produced photonsEph is small
relative to the initial electron energyEel . This allows the
electron velocity to be taken as constant, in which case
radiation produced is obtained from Maxwell’s equatio
with a prescribed external current density. This makes se
in technological applications, where the use of MeV ele
trons is considered for the generation of photons with en
gies of a few hundred eV or lower. In@2# further amend-
ments are made to include the effects of photon absorptio
an absorptive dielectric and the scattering of electrons fr
the individual atoms or ions constituting the mater
~electron-electron and electron-plasmon scattering are
carded as being negligible at high electron energies!. Photon
absorption is included through an exponential damping f
tor and electron scattering is treated as an attenuation ef

e
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A less elegant feature of this approach is the apparent nee
treat the outer layers of a stack separately. An import
drawback inherent to the method is that CR, being a b
effect, is not simultaneously taken into account. In additi
systems with gradually changing« can only be treated per
turbatively.

C. Present approach

A basic flaw of the usual theory is that CR is not include
This makes it difficult to make a choice between TR and
as the basic process for x-ray production. However, the
scription of TR and CR can be unified by realizing that w
are essentially dealing with a scattering phenomenon,e2

1vacuum→e21photons. As is known from quantum ele
trodynamics~QED!, such processes lead to expressions
pending on the field modes. In vacuum QED the latter
simple plane waves but in macroscopic media they beco
the eigenmodes~HE’s! of the Helmholtz operator, the latte
now featuring a nontrivial«(x). Much activity is taking
place in connection with the decay of excited atoms emb
ded in an optical material such as a photonic crystal, ato*
1vacuum→atom1photon. There the decay of the atom
described in terms of the so-called local density of sta
which in turn can be expressed in terms of the HE’s~see@5#
and references quoted there!. As far as we are aware, th
only paper in which the HE’s make their appearance in c
nection with TR is one by Glauber and Lewenstein@6#,
where the quantization of a linear nonabsorptive dielectri
discussed. As an application, the generation of TR is con
ered for the case of a quantized electromagnetic field cou
to a classical current density. After specializing to the sin
interface case the relevant HE’s are determined and the s
dard Ginzburg-Frank formula@4# for a single interface is
recovered under the appropriate conditions.

Below we present a general approach toward TR and
in the same spirit. We make use of results recently obtai
by one of us~Tip @7#!, where both classical and quantize
linear absorptive dielectrics are considered~referred to as
LAD in the following!. We consider two cases involvin
layered dielectrics with finite width.

In Sec. II we study a classical absorptive dielectric with
given external current density, i.e., the familiar situation w
Eph!Eel . However, our medium is a general absorpti
one, and, since we avoid the coherent summation proced
CR is also included and our results apply as well to me
with gradually varying«(x…. The final result involves the
momentum space version~Fourier transform! of the HE’s.

We then turn to the fully quantized situation in Sec. I
Since usually electron beams with high energy are con
ered, we describe the electron through the relativistic Sch¨-
dinger equation~spin effects can safely be discarded, t
energies involved in spin-flip and similar processes be
extremely small relative toEel andEph). Since multiphoton
production is negligible as compared to single photon g
eration, a calculation to leading order in the coupling~fine
structure! constant suffices. This case was already conside
in LAD. Here we simply give the result obtained there. It
interesting to note that the final result does not involve\; it
is essentially classical. In addition, no assumption about
relative magnitudes ofEel and Eph is required, so highly
to
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inelastic processes are covered as well. However, ifEph
!Eel , the result of Sec. II is recovered.

The final step involves the evaluation of the HE’s. W
take this up in Sec. IV, where we start by obtainin
Lippmann-Schwinger and eigenvalue equations. The tran
tion invariance in directions parallel to the interfaces leads
the usual decomposition into two independent problems
the two different polarizations. For each of these a trans
matrix formalism can then be set up. In the special case
layered structure with piecewise constant«(x), the transfer
matrix simply becomes a product of individual matrice
each pertaining to a specific layer. This fixes the HE’s
coordinate representation and a numerical Fourier trans
mation can then be executed to obtain results for spec
cases. In Sec. V, the discussion section, we give a few
amples and comparisons with results obtained through
coherent summation method. Under the appropriate co
tions the agreement is reasonable.

D. Some notions from scattering theory

As said, we shall make use of scattering theoretical c
cepts, in particular of the Mo” ller or wave operatorsV6 . The
latter appear in a natural way if we note that in a scatter
situation@H5H01V is the full Hamiltonian,H0 the free one,
andc(t) the state in the Schro¨dinger case# the actual motion
c(t)5exp(2iHt)c(0) approaches the free motion ex
(2iH0t)w, with w an appropriate state vector, ast→6`, so

V6c~0!5 lim
t→6`

exp~ iHt !exp~2 iH0t !w ~1.2!

exist. ThenS5V1* V2 is the scattering operator for the pro
cess considered. We shall also make use of the feature th
wl

(0) is an eigenvector ofH0 at the eigenvaluel, then wl

5V6wl
(0) is an eigenvector ofH at the same eigenvalue,

H0wl
(0)5lwl

(0)⇒Hwl5lwl . ~1.3!

There exists a vast, mainly mathematical-physical literat
about the existence and completeness~i.e., the unitarity ofS)
of wave operators, in particular for the Schro¨dinger case.
Some useful references are@8–10#. Applications to electro-
magnetic scattering can be found in@7# and @11#.

Concerning notation we note the following: The vacuu
electric and magnetic permeabilities are denoted by«0 and
m0, respectively. Thus the speed of light in vacuum isc0
5(«0m0)21/2. The region of space where the medium is no
absorptive~conservative! is indicated asMna , whereas the
absorptive region is denoted asMa . When considering lay-
ered media we shall always take the interfaces parallel to
X1-X2 plane,ej will be the unit vector in theXj direction,
anda' refers to the component of the vectora perpendicular
to theX3 direction.

II. RADIATION PRODUCED BY A GIVEN CURRENT

A. Maxwell’s equations

Our starting point is the set of Maxwell’s equations for
linear, in general absorptive, dielectric in the presence of
external current densityJ(x,t),
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] tD~x,t !5]x3H~x,t !2J~x,t !,
~2.1!

] tB~x,t !52]x3E~x,t !, ]x•B~x,t0!50.

We assume that magnetization is absent, soB5m0
21H, and

D~x,t !5H «1~x!E~x,t !5«0~11xstat!E~x,t !, xPMna

«0FE~x,t !1E
t0

t

dsx~x,t2s!E~x,s!G , xPMa .

~2.2!

Here t0 is some initial time, taken to be2` later on, and
x(x,t) is the electric susceptibility. Since the latter vanish
outsideMa we can write, setting«1(x)5«0 for xPMa , so
«1(x)x(x,t)5«0x(x,t),

D~x,t !5«1~x!S E~x,t !1E
t0

t

dsx~x,t2s!E~x,s! D .

~2.3!

We recall that the nonabsorptive or static situation follows
the kernelx(t) is decaying rapidly. Then

D~x,t !5«0S E~x,t !1E
0

t2t0
dsx~x,s!E~x,t2s! D

'«0S 11E
0

t2t0
dsx~x,s! DE~x,t !

'«0S 11E
0

`

dsx~x,s! DE~x,t !

5«0@11xstat~x!#E~x,t !. ~2.4!

In LAD a general approach toward linear absorptive diel
trics was presented. There, by means of introducing two a
iliary fields, it was shown that energy conservation can
restored for the combined set of fields, and that this set is
iv
s

f

-
x-
e
e

solution of a set of coupled first order equations and is w
out time convolution terms. Here we briefly recapitulate t
procedure. We note that in generalx(x,0)50 and that
x8(x,t)5] tx(x,t), extended to negativet according to
x8(x,2t)5x8(x,t), has a non-negative Fourier transform
so

x8~x,t !5E
2`

1`

dv exp~2 ivt !s~x,v!2, s~x,v!>0.

~2.5!

Introducing Eq.~2.4! into Eq. ~2.1! we have

] t«1~x!E~x,t !5]x3m0
21B~x,t !

2«0E
t0

t

dsx8~x,t2s!E~x,s!2J~x,t !.

~2.6!

Then, withF1(x,t)5«1(x)1/2E(x,t), F3(x,t)5m0
21/2B(x,t),

and with two new auxiliary real vector fieldsF2(x,v,t) and
F4(x,v,t), which vanish for t5t0 , F2(x,v,t0)
5F4(x,v,t0)50,

] tF1~x,t !5«1~x!21/2]x3m0
21/2F3~x,t !

1E dvs~x,v!F4~x,v,t !2«1~x!21/2J~x,t !,

] tF2~x,v,t !5vF4~x,v,t !, ~2.7!

] tF3~x,t !52m0
21/2]x3«1~x!21/2F1~x,t !,

] tF4~x,v,t !52vF2~x,v,t !2s~x,v!F1~x,t !.

From this set Maxwell’s equations are retrieved by expre
ing the auxiliary fieldsF2 andF4 in terms of the electromag
netic ones and substituting them in the remaining equatio
In compact notation, with
F~ t !5S F1~ t !

F2~ t !

F3~ t !

F4~ t !

D , G~ t !5S «1
21/2J~ t !

0

0

0

D , N5S 0 0 ~«1m0!21/2]x3 E dvs~v!•••

0 0 0 v

2]x3~«1m0!21/2 0 0 0

2s~v! 2v 0 0

D ,

~2.8!
we have

] tF~ t !5NF~ t !2G~ t !52 iKF~ t !2G~ t !. ~2.9!

Noting that the auxiliary fields vanish outside the absorpt
regionMa , the conserved energy is now
e

E5 1
2 ^FuF&5 1

2 E dx@F1~x!21F3~x!2#

1E
Ma

dxE dv@F2~x,v!21F4~x,v!2#. ~2.10!

If we suppose that initially, att5t0, the charged particles
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producing the current density have not yet reached the
dium, all initial fields vanish and Eq.~2.8! has the solution

F~ t !52E
t0

t

dsexp@2 iK~ t2s!#G~s!

→
t0→2`

2E
2`

t

dsexp@2 iK~ t2s!#G~s!

52E
0

`

dsexp@2 iK~s!#G~ t2s!.

~2.11!

B. Radiated energy in terms of wave operators

Let K0 be the generator for the free time evolution, i.
«5«0 and x50 ~note that electromagnetic and auxilia
fields are not coupled byK0). In case the dielectric is finite
or a layered structure with finite width, we can introduce t
Mo” ller or wave operator

V15 lim
t→`

exp~ iKt !exp~2 iK0t !, ~2.12!

which is well defined when acting upon statesF with trans-
verse electromagnetic components, in particular those
which the auxiliary componentsF2 and F4 vanish and the
electromagnetic ones are plane wave eigenstates ofK0. More
information about the use of wave operators in an electro
namical context can be found in LAD and@11#. Now

exp~ iK0t !F~ t !52exp~ iK0t !exp~ iKt !

3E
2`

t

dsexp~ iKs!G~s!

;
t→`

2V1* E
2`

t

dsexp~ iKs!G~s!

;
t→`

2V1* E
2`

`

dsexp~ iKs!G~s!

'2E
2`

`

dsexp~ iK0s!V1* G~s!,

~2.13!

so

F~ t ! ;
t→`

2exp~2 iK0t !E
2`

`

dsexp~ iK0s!V1* G~s!

52exp~2 iK0t !M, ~2.14!

where

M5E
2`

`

dsexp~ iK0s!V1* G~s!. ~2.15!

Suppose the origin of our coordinate system is somewh
inside the dielectric. We calculate the amount of electrom
netic energyEC emerging in a coneC in coordinate space
e-

,

e

or

y-

re
-

centered in the origin and, in the layered case, with axis
parallel to the dielectric interfaces. In order to have no ov
lap with the dielectric, the cone is truncated for smallx.
Then, since the auxiliary fields vanish outside absorbing
gions, the total energy contained inC coincides with its elec-
tromagnetic part. LetxA( f ) be the characteristic function fo
the setA, i.e., xA( f )51 for f PA and vanishes otherwise
Then

xC~x!5u~e•ex2a!u~x2b!, ~2.16!

wheree is the axis of the cone,a the cosine of its aperture
andb the truncation parameter. As discussed in LAD,

lim
t→`

exp~ iK0t !xC~x!Pemexp~2 iK0t !

5@u~e•ep2a!P11u~2e•ep2a!P2#Pem,

~2.17!

whereu(.) is the Heaviside step function,p52 i ]x , P6 are
the projectors upon the eigenspaces ofK0 with positive and
negative eigenvalues, respectively, andPem is the projector
upon the electromagnetic components ofF. Now

EC~ t !5 1
2 ^F~ t !uxC~x!PemuF~ t !&

;
t→`

1
2 ^Muexp~ iK0t !xC~x!Pemexp~2 iK0t !uM&

→
t→`

' 1
2 ^Mu@u~e•ep2a!P1

1u~2e•ep2a!P2#PemuM&5EC . ~2.18!

Let C be the conjugation operator,

~Cf !~x!5 f ~x!. ~2.19!

Then, sinceN52 iK and N052 iK0 are real operators
CNC5N, CN0C5N, so V1 is invariant, CV1C5V1 .
Also CP2C5P1 and CpC52p. SinceG is real, CG5G
and it follows that the first and second terms in Eq.~2.18! are
equal, so

EC5^Muu~e•ep2a!P1PemuM&. ~2.20!

Next we note that the eigenvectorswk j a
(0) of K0,

K0wk j a
(0) 5ac0kwk j a

(0) , ~2.21!

for which the auxiliary components vanish, are given by

wk j a
(0) (x…ÄS nj

0

ek3nj

0

D exp~ iak•x!

4p3/2
, kPR3, j 51,2, a561,

~2.22!

whereek5k/k andn1 andn2 are mutually orthonormal. The
wk j a

(0) ’s are normalized according to
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^wk j a
(0) uwk8 j 8a8

(0) &5E dx wk j a
(0) ~x…•wk8 j 8a8

(0)
~x!

5d~kÀk8!d j j 8daa8 . ~2.23!

SinceKV15V1K0, the corresponding eigenstates ofK are

wk j a5V1wk j a
(0) , Kwk j a5ac0kwk j a . ~2.24!

Unless the medium is conservative, they have nonvanish
auxiliary components. We note that for finite media

lim
x→`

wk j a~x!2wk j a
(0) ~x!'0, ~2.25!

but the situation for layered media is different. We expre
P1Pem in terms of thewk j 1

(0) ’s:

P1Pem5(
j
E dkuwk j 1

(0) &^wk j 1
(0) u, ~2.26!

so, omitting the subscript1 from now on,

EC5(
j
E dku~e•ek2a!^Muwk j

(0)&^wk j
(0)uM&

5(
j
E dku~e•ek2a!^Muwk j

(0)&^wk j
(0)uM&

5(
j
E

C
dk^Muwk j

(0)&^wk j
(0)uM&5(

j
E

C
dku f k j u2

5(
j
E

C
dk Ek j , ~2.27!

where Ek jdk is the radiated energy with wave vector
(k,k1dk) and polarizationj and

f k j5^Muwk j
(0)&

5E
2`

`

dt^exp~ iK0s!V1* G~ t !uwk j
(0)&

5E
2`

`

dt^G~ t !uV1exp~2 iK0s!wk j
(0)&

5E
2`

`

dt exp~2 ikc0t !^G~s!uwk j&

5E
2`

`

dtE dx exp~2 ikc0t !«1~x!21/2w1k j~x!J~x,t !,

~2.28!

where w1k j is the first ~three-dimensional! component of
wk j . Thus we have expressed the emitted radiation in te
of the eigenvectors ofK. Note that all radiation~i.e., both TR
and CR! produced byJ(x,t) is included.

Next we specialize to the layered case, where the in
faces between the layers are parallel to theX1-X2 plane.
Thus we consider the situation that«1(x)5«1(x3) and
x(x,t)5x(x3 ,t). The translation invariance in theX1 andX2
directions then gives
g

s

s

r-

«1~x3!21/2w1k j~x!5221/2exp~ ik'
•x'!wk j~x3!,

~2.29!

~the factor 221/2 is introduced to ease a comparison with t
quantum case, considered below!, where' denotes the com-
ponent of a vector orthogonal to theX3 axis. Then, with

J~x,t !5evd~xÀvt !, ~2.30!

with e the electron charge andv its velocity,

f k j5
e

A2v3
E dx3exp@ i ~k'

•x'2kc0!x3 /v3#wk j~x3!•v,

~2.31!

and

Ek j5
e2

2v3
2 U E dx3exp@ i ~k'

•x'2kc0!x3 /v3#wk j~x3!•vU2

5
pe2

v3
2

z^~k'
•x'2kc0!v/v3uwk j& z2 ~2.32!

in this case.

III. QUANTUM ELECTRODYNAMICAL APPROACH

An alternative to the formalism presented in the preced
section is to consider the radiation production process a
scattering phenomenon. Although this can be done o
purely classical basis, the corresponding quantum theor
much better developed and hence we shall use the la
Thus the incoming state ast→2` is the product of an elec
tron state and the vacuum state for the electromagnetic fi

c in5wel^ wvac , ~3.1!

and the quantity we are interested in is the equivalent ofEC
above. Since multiphoton production is negligible relative
the single photon process, we make the restriction to
latter. This simplifies the formalism dramatically since it a
lows a first order perturbation calculation as discussed
LAD. Here we simply give the result. However, the proc
dure followed in LAD has a minor flaw, which is easil
corrected. The point is that there we calculated the proba
ity of finding a photon in the coneC in coordinate space
This does not make sense since the electrodynamic par
the vectors in the first Fock layer are transverse andxC(x)
acting upon the latter leads to longitudinal contributions
well. The situation is easily remedied by calculating inste
the expected energy inC, i.e., the expectation value, as tim
t→`, of

EC5
1
2 E dxxC~x!@E~x!21B~x!2#, ~3.2!

whereE and B are now field operators. Here the auxilia
fields do not appear, since, as in the classical case, they
ish outside the absorptive region. The result obtained in L
is still correct, except that here we also present the~minor!
contribution from processes where the electron is reflec
from the medium, a situation that is not included in the cla
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sical approach where the electron velocity is fixed. Thus
have for a layered medium with finite thickness,

lim
t→`

^E C
(1)~ t !&5(

j
E

C
dkEk j , Ek j5Ek j

tr 1Ek j
re f ,

~3.3!

where the superscript~1! indicates that the contribution from
the first Fock layer~single photon production! is taken,
whereas the subscriptstr and re f refer to the cases wher
the electron is transmitted and reflected, respectively. Eq
tion ~3.3! is obtained in the case where the initial electr
state is strongly peaked around the momentumk1 , k13.0, in
the limit that it approaches a plane wave while keeping
normalized to unity~this approach would not work for a
finite medium since there the overlap of the electron wa
function and medium would tend to zero!. Thus Eq.~3.3!
gives the energy per electron. For its two components
have (aj 3 is the component ofaj alongX3)

Ek j
tr

5
e2

2k13k23
U E dx3exp@2i~k132k23!x3#wk j~x3!•

1

2
~k11k2!U2

5
e2

k13k23
K 1

2
~k232k13!~k11k2!Uwk j L 2

,

Ek j
re f5

e2

2k13k23
U E dx3exp@2 i ~k131k23!x3#wk j~x3!•

1

2
~k1

1k2
'2k23e3!U2

5
pe2

k13k23
U K 2

1

2
~k131k23!~k11k2

'2k23e3!Uwk j L U2

~3.4!

wherek2 with k23.0 is determined by the relations

k1
'5k2

'1k', Fk1
21S mc0

\ D 2G1/2

5Fk2
21S mc0

\ D 2G1/2

1k.

~3.5!

Sincepj5\k j is the electron momentum,pph5\k the pho-
ton momentum, and the initial and final electron energies
Ein5\c0@k1

21(mc0 /\)2#1/2, Eout5\c0@k2
21(mc0 /\)2#1/2,

whereasEph5\c0k is the photon energy, these relations e
press the conservation of the momentum components
thogonal to theX3 axis and the energy. Finally,wk j (x3) is
the mode function introduced in Eq.~2.29!.

We make the following remarks.
~a! Energy is conserved in the photon creation proce

The absorption mechanism affects the created photons
when propagating through the medium and it enters the
malism through the mode functionswk j .

~b! Since transition radiation is created only in space
gions with steep gradients in the permeability, its product
can be optimized by keeping absorptive layers thin, sub
to coherence requirements.
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~c! Although the above expressions were obtain
through a quantum-electrodynamical calculation, they do
depend on\ and hence are in essence classical.

Let us now consider the situation we encountered ear
i.e.,

Eph!Ein'Eout . ~3.6!

It follows from the conservation laws that

k232k135~k231k13!
21H k3

212k1
'
•k'

22kFk1
21S mc0

\ D 2G1/2J
'

k1
'
•k'2k@k1

21~mc0 /\!2#1/2

k13
. ~3.7!

Using

\k j5pj5@12~v j /c0!2#21/2mvj , ~3.8!

and settingv15v,

k232k13'v3
21~k'

•v'2kc0!; ~3.9!

this leads to

Ek j
tr '

e2

2v3
2 U E dx3exp@ i ~k'

•v'2kc0!x3 /v3#wk j~x3!•vU2

,

~3.10!

which is Eq.~2.32!. Sincek231k13@k232k13, the exponen-
tial in Ek j

re f is oscillating much faster than the one inEk j
tr , so

Ek j
re f!Ek j

tr .

IV. MODE FUNCTIONS FOR A LAYERED MEDIUM

A. The Lippmann-Schwinger and eigenvalue equations

For a further evaluation of the expressions~2.32! and
~3.4! we need the eigenmodeswk j5V1wk j

(0) wherewk j
(0) is

given by Eq.~2.21! with a51. Some of the material dis
cussed below can be found in LAD, but since there
vacuum permeabilities were set equal to 1, we briefly re
pitulate a few matters. Our starting observation is that due
the skew-symmetric structure ofK, its square blocks out,

K25S He 0

0 Hm
D ,

~4.1!

He5S c~x…H0c~x! E dvvs~x,v!•••

vs~x,v! v2
D .

Herec(x)5@«1(x)m0#21/2 and, withU the unit 333 matrix,
H05p2U2pp52]x

2U1]x]x . Setting

wk j5
1

A2
S uk j

vk j
D ~4.2!
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and noting that

K2wk j5k2c0
2wk j , ~4.3!

we have

Heuk j5k2c0
2uk j , Hmvk j5k2c0

2vk j . ~4.4!

The functionsuk j anduk j
(0) ,

uk j
(0)~x!5S ~2p!23/2nj exp~ ik•x!

0 D , ~4.5!

are related by the wave operator~it differs from but is related
to the one introduced in Sec. II!

V5 lim
t→`

exp~ iHet !exp~2 iHe
(0)t !

511 i lim
d→0

E
0

`

dt exp~2dt !

3exp~ iHet !V exp~2 iHe
(0)t !, ~4.6!

i.e.,

uk j5Vuk j
(0)

5uk j
(0)1 i lim

d→0
E

0

`

dt exp~2dt !exp~ iHet !V

3exp~2 iHe
(0)t !uk j

(0)

5uk j
(0)1~z22He!

21Vuk j
(0) , ~4.7!

wherez25k2c0
22 id in the limit d↓0 and

He5He
(0)1V, He

(0)5S c0
2H0 0

0 v2D . ~4.8!

In our expressions only the first componentu1k j is needed.
Taking the projection upon the first component of the rig
hand side of Eq.~4.7! and using the Feshbach formula~see
LAD !, we then arrive at the Lippmann-Schwinger equatio

u15u1
(0)1@z22He f f~z2!#21Ve f f~z2!u1

(0)

5@z22He f f~z2!#21@z22c0
2H0#u1

(0) , ~4.9!

where we dropped the subscriptk j for brevity and

He f f~z2!5cH0c2z2x̂~z!,

Ve f f~z2!5cH0c2c0
2H02z2x̂~z!, ~4.10!

x̂~z!5E
0

`

dt exp~ izt!x~ t !, z5~k2c0
22 id!→

d↓0

2kc0 .

Multiplying Eq. ~4.9! by z22He f f(z
2) and in the limitd↓0

we obtain the eigenvalue equation

@k2c0
22He f f~k2c0

22 i0!#u1k j50. ~4.11!
t

B. The layered case

It is convenient to set

z25z2c0
2 , z25k22 id, z52k1 id8. ~4.12!

Then

«1
21/2u15«1

21/2 c

c0
H z2

c2
~11x̂~z!!2H0J 21

c

c0
S z2

c0
2

2H0D u1
(0)

5@z2«~z!2H0#21S «1

«0
D 1/2

~z22H0!u1
(0) , ~4.13!

where

«~x,z!5H 1, vacuum

11xstat~x!, nonabsorptive regions

11x̂~x,zc0!, absorptive regions.
~4.14!

We now specialize to the layered case:«15«1(x3), x
5x(x3 ,t). Then, settingk'5k,

«1
21/2u1k j~x!5exp~ i k•x!wk j~x3!,

«0
21/2u1k j

(0) ~x!5exp~ i k•x!wk j
(0)~x3!, ~4.15!

wk j
(0)~x3!5~2p!23/2«0

21/2exp~ ik3x3!,

where w is the same function as we encountered befo
Again dropping subscripts we obtain

w5@z2«~z!2H0~k!#21S «1

«0
D 1/2

@z22H0~k!#w(0)

5@z2«~z!2H0~k!#21@z22H0~k!#H 11@z2

2H0~k!#21F S «1

«0
D 1/2

21G@z22H0~k!#J w(0),

with

H0~k!5H0~k,p3!

5~k21p3
2!U2~k1p3e3!~k1p3e3!

5~k21p3
2!D~k,p3!. ~4.16!

The term

@z22H0~k!#21F S «1

«0
D 1/2

21G@z22H0~k!#w(0)

5 lim
d→0

@k22 id2H0~k!#21F S «1

«0
D 1/2

21G~2 id!w(0)

vanishes. This follows from the fact that («1 /«0)1/221 van-
ishes forx3 outside the medium and that the Green’s fun
tion associated with@z22H0(k)#21 is given by
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^x3u@z22H0~k!#21uy3&5k22d~x32y3!

1
i

2uk3u
D~k,2 i ]x3

!

3exp~2 i uk3uux32y3u!.

~4.17!

Hence

wk j5@z2«~z!2H0~k!#21@z22H0~k!#wk j
(0)

5wk j
(0)1@z22H0~k!#21T~z!wk j

(0) , ~4.18!

where theT matrix T(z) is given by

T~z!5V~z!1V~z!@z2«~z!2H0~k!#21V~z!,

V~z!5z2@12«~z!#, ~4.19!

and Eq.~4.11! now takes the form

@k2«~2k!2H0~k!#wk j50. ~4.20!

C. The transfer matrix method

In dealing with one-dimensional second order differen
equations with piecewise constant coefficients such as
l
e

encounter in the layered case, it is convenient to use
transfer matrix formalism. It supplies the solutions of E
~4.20! up to normalization constants. The latter are then fix
by the behavior ofw for large x3 which follows from Eqs.
~4.17! and~4.18!. Let us choose a coordinate frame such th
the origin is inside the medium andI5@x2 ,x1# is the inter-
val consisting ofx3 inside the medium andk in the X2-X3
plane, sok5ke2 and n15e1. In the following x5x3 , p5
2 i ]x , and«5«(x,z). At this point we note thate1•H0(k)
5(k21p2)e1, leading to e1•@z2«2H0(k)#215@z2«2k2

2p2#e1 and Eqs.~4.18! and~4.20! reduce to the scalar equa
tions @w1

(0)5e1•wk1
(0)5(2p)23/2exp(ik3x3)#

w15w1
(0)1~k3

22 id2p2!21t~z!w1
(0) ,

~4.21!

t~z!5V~z!1V~z!~k3
22 id2p2!21V~z!,

and

@k2«2k22p2#w150. ~4.22!

Thus wk1 corresponds withw1 and wk2 with the set$w j
5ej•wk2 , j 52,3%. With m5uk3u and noting thatV(x3 ,z)
vanishes outsideI, we have
w~x3!5w(0)~x3!1
i

2m
D~k,2 i ]x3

!E
I
dy3exp~2 imux32y3u!^y3uTuw(0)&

55 w(0)~x3!1
i

2m
D~k,2m!E

I
dy3exp@2 im~x32y3!#^y3uTuw(0)&, x3.x1

w(0)~x3!1
i

2m
D~k,m!E

I
dy3exp@ im~x32y3!#^y3uTuw(0)&, x3,x2

55 w(0)~x3!1
i

m
Ap

2
D~k,2m!exp~2 imx3!^muTuw(0)&, x3.x1

w(0)~x3!1
i

m
Ap

2
D~k,m!exp~ imx3!^2muTuw(0)&, x3,x2 .

~4.23!
Expanding, wk25( j 52
3 w jej , we obtain upon substitution

into Eq. ~4.20! and equating coefficients

~k2«2p2!w21kpw350, @k2«2k2#w31kpw250.
~4.24!

Hencep2w252pk21(k2«2k2)w3 and substitution into the
second equation above results inp«w31k«w250, so we
end up with a coupled set of first order equations forw2,3,
which can be written as

]xf~x!52 iA~x!f~x!, f~x!5S w2~x!

«w3~x!
D ,
A~x!5S 0 k21~k2«2k2!

k« 0 D , ~4.25!

with the solution

f~x!5U~x,x8!f~x8!, ~4.26!

and where thetransfer matrixU(x,x8) satisfies

]xU~x,x8!52 iA~x!U~x,x8!,
~4.27!

U~x,x!51, U~x,x9!U~x9,x8!5U~x,x8!.
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Note that even ifA(x) has discontinuities,U(x,x8) is con-
tinuous in both arguments. In the layered case, where«(x,z)
is constant over each layer, we have, forx0 , x1, andx2 in the
same layer,

U~x1 ,x2!5exp@2 iA~x0!~x12x2!#. ~4.28!

Now, for x.x1.x2.x8,

f~x!5U~x,x1!U~x1 ,x2!U~x2 ,x8!f~x8!, ~4.29!

whereU(x1 ,x2) consists of the product of a finite numb
of known matrices, each pertaining to a given layer. Next
note that outside the medium,f satisfies the free equations o
motion

f~x!5H exp@2 iA0~x2x1!#f~x1!, x.x1 ,

exp@2 iA0~x2x2!#f~x2!, x,x2 ,
~4.30!

A05S 0 k21k3
2

k 0
D ,

but also has the asymptotic behavior given by Eq.~4.20!.
This fixesf(x6) according to

f~x2!5~2p!23/2exp~ ik3x1!

3sin 2q@ek8•U~x1 ,x2!•n2#21n2 ,
~4.31!

f~x1!5~2p!23/2exp~ ik3x1!

3sin 2q@ek8•U~x1 ,x2!•n2#21U~x1 ,x2!•n2 ,

for k3.0, whereas fork3,0

f~x1!5~2p!23/2exp~ ik3x2!

3sin 2q@ek8•U~x1 ,x2!•n2#21n2 ,
~4.32!

f~x2!5~2p!23/2exp~ ik3x2!

3sin 2q@ek8•U~x1 ,x2!•n2#21U~x1 ,x2!•n2 .

Hereq is the angle betweenk and the positiveX3 axis, so
ek5(0,sinq,cosq) and n25(0,cosq,2sinq), whereasek8
5(0,sinq,2cosq). Now f(x) and hencewk2(x) can be ob-
tained for any otherx from Eq. ~4.24!.

For w1 we have

]xg~x!52 iB~x!g~x!, g~x!5S w1~x!

2 i ]xw2~x!
D ,

B~x!5S 0 21

k22k2« 0 D , ~4.33!

so

g~x!5V~x,x8!g~x8!, ~4.34!
e

where V(x,x8) satisfies Eq.~4.25! with A(x) replaced by
B(x) and with corresponding further developments, result
in

g~x2!5~2p!23/2k3exp~ ik3x1!@a•V~x1 ,x2!•b#21b,

g~x1!5~2p!23/2k3exp~ ik3x1! ~4.35!

3@a•V~x1 ,x2!•b#21V~x1 ,x2!•b

for k3.0, whereas fork3,0

g~x1!5~2p!23/2k3exp~ ik3x2!@a•V~x2 ,x1!•b#21b,

g~x2!5~2p!23/2k3exp~ ik3x2! ~4.36!

3@a•V~x2 ,x1!•b#21V~x2 ,x1!•b.

Herea andb are given by

a5S k3

1 D , b5S 1

k3
D . ~4.37!

In actual situations the dielectrics consist of two types
layers which alternate, so layers 1,3,5, . . . ,2N21 have the
same structure, as have layers 2,4,6, . . . ,2N. Then
U(x1 ,x2) andV(x1 ,x2) become powers of two-layer ma
trices, whereas an additional single layer matrix is neede
the total number of layers is odd. If the permeability
changing gradually,U(x,x8) and V(x,x8) can still be ob-
tained by means of a direct numerical integration of E
~4.25!.

V. DISCUSSION

In this section only situations involving normally inciden
electrons will be considered. Thenv5ve3 in Eq. ~2.32!
which now becomes

Ek j5
pe2

v2
u^2kc0e3uwk j&u2, ~5.1!

Ek jdk being the radiated energy per electron with polariz
tion j and wave number betweenk andk1dk.

A. Comparison with results obtained by the coherent
summation procedure

For brevity we refer to the coherent summation method
CSM and to the present approach as STM~scattering theo-
retical method!. The validity of CSM involves the following:
~a! The electron velocity is constant.~b! There is no genera
tion of CR. ~c! A stack consisting of an odd number of a
ternating layers, 1,2, . . . ,2N21 is considered. Layers 0 an
2N refer to the vacuum at both sides of the stack.~d! The
radiation generated at the internal interfacesi ,i 11 and i
11, i 12 has equal amplitude and opposite phase.~e! The
radiation generated at the external interfaces 0,1 andN
21, 2N is taken equal to that of 2,3 and 1,2, respectively.~f!
The radiation emerging from the last interface is obtained
coherently summing up the contributions from the individu
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interfaces.~g! The dielectric is nonabsorptive.~h! A decrease
in the electron beam intensity inside the medium due to s
tering can be discounted.

Assumptions~d! and~f! requireu« i 112« i u to be small. If
not, reflection cannot be neglected and the summation
cedure is not justified. Condition~e! is acceptable if the num
ber of layers is sufficiently large.~But then the contribution
from the boundary interfaces can be put equal to zero
well.! As mentioned earlier, restrictions~g! and ~h! have
been removed to some extent by Kaplanet al. @2#. If we
compare the above list with our results in Secs. II and III,
see that the STM only requires~h!, the tradeoff being tha
now the Helmholtz eigenfunctions must be calculated, wh
is a straightforward matter. However, if~a!–~g! are met, then
the results of both approaches are comparable. To verify
we consider two multilayer structures,A andB, with incident
electron beams of moderate and high energy, respectiv
Note that multilayer structures can be expected to boost
yields at a fixed wavelength only if they are optimized, i.
the layer thicknesses are such that constructive interfere
of radiation, produced at subsequent interfaces, takes p
This involves both the electron speed and the radiation
locity in a layer. StructureA consists of 207 alternating lay
ers of barium and beryllium, each layer having a width
66.45 nm. Barium has an absorption edge at a waveleng
1.59 nm which causes structureA to produce intense TR an
CR in the vicinity of this wavelength, with an electron bea
of sufficient energy~see@2#!. We analyze the radiation emit
ted from structureA at this wavelength, for which«Ba
51.001310.000 21i and «Be50.998810.000 059i (u«Ba
2«Beu50.0024). StructureB consists of 101 alternating lay
ers of silicon and molybdenum, each with thickness 65 n
For structureB we focus on the wavelength 12.44 nm, f
which silicon has an absorption edge,«Si51.04310.0036i
and«Mo50.8810.0099i (u«Si2«Mou50.16).

StructureA has a smallu« i 212« i u and is therefore ex-
pected to be accurately described by the CSM, provi
there is no emission of CR. For an electron beam of
MeV, for which no CR is generated, the CSM results ag
very well with the corresponding STM ones. Both metho
predict production of TR in a cone with axis alongX3 with a
maximum at the angleu5umax56.66° and a narrow distri-
bution around this value. Disregarding photon absorpti
the CSM gives a 1% higher intensity than the STM atu
5umax, which number increases to 4.3% if absorption
taken into account~here the augmented CSM, put forward
@2#, was employed!. This is not too bad in view of the fac
that absorption reduces the total photon yield by a facto
14. When structureA is exposed to a more energetic electr
beam of 45 MeV, then the TR yield will be supplemented
CR emission generated in the barium layers. This emiss
of CR is not correctly described by the CSM. In Fig. 1 t
predicted radiation yields for the CSM and STM are plott
against the emission angleu, taking photon absorption into
account. We see that the CSM and STM show the same p
at u58.85° but the CSM fails to describe the yield in th
0°,u,3° range correctly. This is to be expected since C
is emitted atu51.93° which distorts the CSM results in th
0°,u,3° range but leaves the peak atu58.85° unaltered.
Without photon absorption the CSM even predicts an infin
yield at u51.93°.
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Since structureB has a largeu« i 212« i u it is expected that
the CSM might fail in describing it, even without CR emi
sion. This turns out to be only partially correct; even for th
structure with largeu« i 212« i u the CSM appears to be rea
sonably capable of describing the radiation yield as long
CR is absent. In Fig. 2 , where an electron beam of 1.5 Me
is employed~which does not generate CR!, the TR yields
predicted by the CSM and STM are plotted against emiss
angleu. Photon absorption has been included. We see
the CSM and STM agree qualitatively, but there are so
noteworthy differences, especially in the minor peaks. For
electron beam of 15 MeV a more pronounced discrepa
appears, as can be seen in Fig. 3. The STM predicts emis
in the 0°,u,10° range, while the CSM does not. Th
cause of the discrepancy is not so much the generation of
that takes place for 15 MeV electrons, but rather the fact t

FIG. 1. Combined TR and CR yield at wavelength 1.59 nm
photons/bandwidth sr electron versus emission angleu for 207 al-
ternating layers of barium and beryllium, each 66.45 nm thick,
ing bombarded by 45 MeV normally incident electrons.

FIG. 2. TR yield at wavelength 12.44 nm in photons/BW
electron versus emission angleu for 101 alternating layers of sili-
con and molybdenum, each 65 nm thick, being bombarded by
MeV normally incident electrons.
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structureB is optimized for a 1.5 MeV beam. In fact, th
CSM turns out to be particularly good in describing peaks
the radiation distribution that arise from positive interfe
ence, as in an optimized structure. The peak atu51.89° that
CSM fails to predict corresponds to the TR emitted at the
interface alone; it does not fullfil a coherence condition.

The above examples show that the CSM suffices for
scribing TR generated in an optimized multilayer structu
that has a moderateu« i 212« i u, provided there is no genera
tion of CR. If u« i 212« i u is large the CSM can be slightl
inaccurate, as seen in Fig. 2. If CR emission takes plac
the multilayer structure is not optimized then more serio
discrepancies are found, as seen in Figs. 1 and 3. Finally
give a comparison of the CSM and quantum STM pred
tions for TR produced by a single slab in Fig. 4. It is se
that the quantum STM result correctly becomes zero

FIG. 3. Combined TR and CR yield at wavelength 12.44 nm
photons/BW sr electron versus emission angleu for 101 alternating
layers of silicon and molybdenum, each 65 nm thick, being bo
barded by 15 MeV normally incident electrons.

FIG. 4. TR yield at wavelength 12.44 nm and at optimiz
emission angle in photons/BW sr electron versus electron en
for a single 10mm thick silicon slab being bombarded by normal
incident electrons.
n
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e
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electron energies smaller than the observed photon ene
whereas the CSM yield gradually decreases with decrea
electron energy.

In a separate publication@13#, we shall present detailed
numerical results about TR and CR yields for a variety
situations.

B. Further theoretical considerations

The approach we have followed gives a considerable
provement over the coherent summation procedure an
likely to be optimal within the framework of the linear phe
nomenological Maxwell’s equations~ME!. The latter can be
looked upon as a type of mean field approximation to
underlying microscopic physics. As such it does not inclu
processes such as electron scattering from the individual
ticles ~atoms or ions! constituting the material, and accord
ingly the associated bremsstrahlung is also missing. Atte
ation of the electron beam can be included in much the sa
way as has been done in the CSM, as we have done in s
of our calculations@12#. If we use the formalism of Sec. II
where the current is prescribed, we can try to include el
tron scattering by specifying the path of the electron diff
ently. In fact, an individual electron will perform a loss
random walk~it can lose energy at each encounter with o
of the particles in the material!. This makes the current a
random quantity and an additional averaging is required
arrive at the final result. Alternatively, a formulation in term
of a transport equation can be contemplated. The basic
is then to add an additional termV, which accounts for the
interaction of the electron with the individual atoms, to t
Hamiltonian

H5Helectron1H f ield1Hint ~5.2!

that is at the basis of our results presented in Sec. III. In
simplest form, disregarding inelastic processes, such as e
tation of the atoms and energy-momentum transfer,V con-
sists of a sum of potentials,

V5(
j

Vj~x2xj !, ~5.3!

whereVj is the potential between the electron and thej th
atom or ion in the material,x being the electron coordinat
andxj the position of thej th atom. Depending on the type o
material,xj is a lattice point of a crystal or randomly distrib
uted in an amorphous material. Note that without the c
pling with the field we are dealing with the quantum Loren
gas. The next step would be to make a binary collision
pansion of theT matrix associated withV. The leading term
in this expansion describes the situation where the individ
scattering events are independent~Boltzmann equation
level!. If this is the case, i.e., higher order terms can
dropped, the resulting expression for radiation product
not only accounts for electron beam attenuation but also
scribes the radiation produced by the deflected electr
~which we expect to be of minor importance!. However, this
program is quite difficult to implement; either a density o
erator approach or the Bethe-Salpeter equation is neede
further complication being the breaking of the translati
invariance in theX1 andX2 directions. For randomly distrib-
uted atoms it can be restored by averaging over the posit
xj but that can only be justified if the underlying stochas
process is ergodic.
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